David Jarossay

Post-doctoral researcher, University of Strasbourg
e-mail : jarossay@math.unistra.fr

Curriculum vitae


My work is about the pro-unipotent fundamental groupoid of algebraic varieties and its periods


Publications


Papers
Double mélange des multizêtas finis et multizêtas symétrisés
Comptes rendus - Mathématique 352 (2014) pp.767-771

Notes of announcement
Un cadre explicite pour les polylogarithmes multiples p-adiques et les multizêtas p-adiques
Comptes-rendus - Mathématique 353 (2015) pp.871-876

Une notion de multizêtas finis associée au Frobenius du groupe fondamental de P^1 - {0,1,infty}
Comptes rendus - Mathématique 353 (2015) pp.877-882

Expository texts
An explicit theory of the crystalline pro-unipotent fundamental groupoid of P^1 - (0,1,infinity) : summary of parts I and II (46 pages)
To appear in RIMS Kokyûrokû, Proceedings of the conference "Various aspects of multiple zeta values" held in July of 2016 at RIMS, Kyoto, Japan



Pre-publications


Project 1 : an explicit theory of the crystalline pro-unipotent fundamental groupoid of P^1 - (0,mu_N,infinity)

I - Explicit computation of the Frobenius
I-1 - Direct solution to the equation of horizontality (submitted)
I-2 - Indirect solution to the equation of horizontality
I-3 - The number of iterations of the Frobenius viewed as a variable

II - Algebraic relations of cyclotomic p-adic multiple zeta values
II-1 - Standard algebraic relations of prime weighted multiple harmonic sums and adjoint multiple zeta values
II-2 - From algebraic relations of weighted multiple harmonic sums to those of cyclotomic p-adic multiple zeta values
II-3 - Sequences of multiple harmonic sums viewed as periods

Project 2 : on Drinfeld associators and the depth filtration

Depth reductions for associators (submitted)


Video of a talk containing a part about my work


Integrality of p-adic multiple zeta values and application to finite multiple zeta values
Talk by Seidai Yasuda at the Séminaire d'Arithmétique et Géométrie Algébrique Paris-Pékin-Tokyo (2015, april, 8)
My proof of a conjecture of Akagi, Hirose and Yasuda on p-adic multiple zeta values, contained in the paper "I-2" above, is explained from 47' to 59' and used afterwards for an application to the finite multiple zeta values of Kaneko and Zagier


Older documents


Espaces principaux homogènes localement triviaux
Mémoire "Introduction au domaine de recherche" of end of studies at ENS (october 2011)
Under the supervision of Philippe Gille

Modèle p-spin sur des hypergraphes aléatoires : des systèmes vitreux aux ensembles aléatoires d'équations linéaires booléennes
Mémoire of first year at ENS (september 2009, with Renaud Detcherry)
Under the supervision of Marc Lelarge and Guilhem Semerjian