Yet another generalization of
Postnikov’s hook length formula for binary trees

Guo-Niu HAN

ABSTRACT. — We discover another one-parameter generalization of
Postnikov’s hook length formula for binary trees. The particularity of
our formula is that the hook length h_v appears as an exponent. As an
application, we derive another simple hook length formula for binary trees
when the underlying parameter takes the value $1/2$.

1. Introduction

Consider the set $B(n)$ of all binary trees with n vertices. For each
vertex v of $T \in B(n)$ the hook length of v, denoted by h_v, or just h for
short, is the number of descendants of v (including v). The following hook
length formula for binary trees

$$(1) \quad \sum_{T \in B(n)} \prod_{v \in T} (1 + \frac{1}{h_v}) = \frac{2^n}{n!} (n + 1)^{n - 1}$$

was discovered by Postnikov [Po04]. Further combinatorial proofs and
extensions have been proposed by several authors [CY08, GS06, MY07,
Se08]. In particular, Lascoux conjectured the following one-parameter
generalization

$$(2) \quad \sum_{T \in B(n)} \prod_{v \in T} (x + \frac{1}{h_v}) = \frac{1}{(n + 1)!} \prod_{k=0}^{n-1} ((n + 1 + k)x + n + 1 - k),$$

which was subsequently proved by Du-Liu [DL08]. The latter generalization
appears to be very natural, because the left-hand side of (2) can be
obtained from the left-hand side of (1) by replacing 1 by x.

It is also natural to look for an extension of (1) by introducing a new
variable z in the right-hand side, namely by replacing $2^n(n + 1)^{n - 1}/n!$ by
$2^n z(n + z)^{n - 1}/n!$! It so happens that the corresponding left-hand side is
also a sum on binary trees, but this time the hook length h_v appears as
an exponent. The purpose of this Note is to prove the following Theorem.

Theorem 1. For each positive integer n we have

$$(3) \quad \sum_{T \in B(n)} \prod_{v \in T} \frac{(z + h)^{h-1}}{h(2z + h - 1)^{h-2}} = \frac{2^n z}{n!} (n + z)^{n-1}.$$

With $z = 1$ in (3) we recover Postnikov’s identity (1). The following
corollary is derived from our identity (3) by taking $z = 1/2$.

1
Corollary 2. For each positive integer \(n \) we have

\[\sum_{T \in B(n)} \prod_{v \in T} (1 + \frac{1}{2h})^{h-1} = \frac{(2n + 1)^{n-1}}{n!}. \]

2. Proof of the Theorem

Let us take an example before proving the Theorem. There are five binary trees with \(n = 3 \) vertices:

\[T_1 \quad T_2 \quad T_3 \quad T_4 \quad T_5 \]

\[1 \quad 2 \quad 3 \quad 1 \quad 2 \quad 3 \quad 1 \quad 2 \quad 3 \]

The hook lengths of \(T_1, T_2, T_3, T_4 \) are all the same 1, 2, 3; but the hook lengths of \(T_5 \) are 1, 1, 3. The left-hand side of (3) is then equal to

\[
4 \times \frac{1}{(2z)^{-1}} \cdot \frac{(z + 2)^{1}}{2} \cdot \frac{(z + 3)^{2}}{3(2z + 1)} + \frac{1}{(2z)^{-1}} \cdot \frac{1}{(2z)^{-1}} \cdot \frac{(z + 3)^{2}}{3(2z + 1)} = \frac{2^3 z(z + 3)^2}{3!}.
\]

Let \(y(x) \) be a formal power series in \(x \) such that

\[y(x) = e^{xy(x)}. \]

By the Lagrange inversion formula \(y(x)^z \) has the following explicit expansion:

\[y(x)^z = \sum_{n \geq 0} z(n + z)^{n-1} \frac{x^n}{n!}. \]

Since \(y^{2z} = (y^z)^2 \) we have

\[\sum_{n \geq 0} 2z(n + 2z)^{n-1} \frac{x^n}{n!} = \left(\sum_{n \geq 0} z(n + z)^{n-1} \frac{x^n}{n!} \right)^2. \]

Comparing the coefficients of \(x^n \) on both sides of (7) yields the following Lemma.
Lemma 3. We have

\[\frac{2z(n+2z)^{n-1}}{n!} = \sum_{k=0}^{n} \frac{z(k+z)^{k-1}}{k!} \times \frac{z(n-k+z)^{n-k-1}}{(n-k)!}. \]

Proof of the Theorem. Let

\[P(n) = \sum_{T \in \mathcal{B}(n)} \prod_{v \in T} \frac{(z+h)^{h-1}}{h(2z+h-1)^{h-2}}. \]

With each binary tree \(T \in \mathcal{B}(n) \) \((n \geq 1)\) we can associate a triplet \((T', T'', u)\), where \(T' \in \mathcal{B}(k) \) \((0 \leq k \leq n-1)\), \(T'' \in \mathcal{B}(n-1-k) \) and \(u \) is a vertex of hook length \(h_u = n \). Hence

\[P(n) = \sum_{k=0}^{n-1} P(k)P(n-1-k) \times \frac{(z+n)^{n-1}}{n(2z+n-1)^{n-2}}. \]

It is routine to verify that \(P(n) = 2^n z(n+z)^{n-1}/n! \) for \(n = 1, 2, 3 \). Suppose that \(P(k) = 2^k z(n+k)^{k-1}/k! \) for \(k \leq n-1 \). From identity (9) and Lemma 3 we have

\[
P(n) = \sum_{k=0}^{n-1} \frac{2^k z(n+k)^{k-1}}{k!} \times \frac{2^{n-k-1}z(n-k-1)^{n-k-2}}{(n-k-1)!} \\
\times \frac{(z+n)^{n-1}}{n(2z+n-1)^{n-2}} \\
= \frac{2^n z}{n!} (z+n)^{n-1}.
\]

By induction, formula (3) is true for any positive integer \(n \).

3. Concluding and Remarks

The right-hand sides of (3) and (4) have been studied by other authors [GS06, DL08, MY07], but our formula has the following two major differences: (i) the hook length \(h_v \) appears as an exponent; (ii) the underlying set remains the set of binary trees, whereas in the above mentioned papers the summation has been changed to the set of \(m \)-ary trees or plane forests. It is interesting to compare Corollary 2 with the following results obtained by Du and Liu [DL08]. Note that the right-hand sides of formulas (4), (10) and (11) are all identical!
Proposition 4. For each positive integer \(n \) we have

\[
\sum_{T \in \mathcal{T}(n)} \prod_{v \in I(T)} \left(\frac{2}{3} + \frac{1}{3h} \right) = \frac{(2n + 1)^{n-1}}{n!},
\]

where \(\mathcal{T}(n) \) is the set of all 3-ary trees with \(n \) internal vertices and \(I(T) \) is the set of all internal vertices of \(T \).

Proposition 5. For each positive integer \(n \) we have

\[
\sum_{T \in \mathcal{F}(n)} \prod_{v \in (T)} \left(2 - \frac{1}{h} \right) = \frac{(2n + 1)^{n-1}}{n!},
\]

where \(\mathcal{F}(n) \) is the set of all plane forests with \(n \) vertices.

References

