Page personnelle de Olivier Guichard

Olivier Guichard

Université de Strasbourg
7, rue René Descartes,
67084 Strasbourg cedex, France.

Courrier électronique :
Bureau : i504
Téléphone : (+33) 3 68 85 01 33


Habilitation à diriger les recherches

Aspects topologiques et géométriques des représentations de groupes de surfaces, pdf. Soutenue le 12 décembre 2011.

Cours cohomologie bornée

Notes du cours à la demande.


  • Anosov Representations : Domains of Discontinuity and Applications, (avec Anna Wienhard), Invent. Math. 190 (2012), no. 2, 357–438, pdf, online.
  • Displacing Representations and Orbit Maps, (avec Thomas Delzant, François Labourie, Shahar Mozes), Dans Geometry, Rigidity and Group Actions. Sous la dir. de Benson Fard, David Fisher et Robert J. Zimmer, University of Chicago Press (2011), 494–514, pdf.
  • Topological Invariants of Anosov Representations, (avec Anna Wienhard), J. Topol. 3 (2010), no. 3, 578–642, pdf.
  • Domains of Discontinuity for Surface Groups, (avec Anna Wienhard), C. R. Math. Acad. Sci. Paris 347 (2009), 1057–1060, pdf.
  • Convex foliated projective structures and the Hitchin component of \(\mathrm{SL}(4, \mathbf{R})\), (avec Anna Wienhard), Duke Math. J. 144 (2008), no. 3, 381–445, pdf.
  • Composantes de Hitchin et représentations hyperconvexes de groupes de surface, J. Differential Geom. 80 (2008), no. 3, 391–431(fut «sur les représentations des groupes de surface»), pdf.
  • Connexité et densité des représentations irréductibles des groupes de surface dans le groupe général linéaire, Transform. Groups 12 (2007), no. 2, 251–292, pdf.
  • Une dualité pour les courbes hyperconvexes, Geom. Dedicata 112 (2005), 141–164, pdf.
  • Régularité des convexes divisibles, Ergodic Theory Dynam. Systems 25 (2005), no. 6, 1857–1880, pdf.
  • Groupes plongés quasi isométriquement dans un groupe de Lie, Math. Ann. 330 (2004), no. 2, 331–351, pdf.

  • Prépublications

  • Anosov Representations and Proper Actions, (avec Fanny Kassel, François Guéritaud et Anna Wienhard), pdf.
  • Les Espaces de Teichmüller généralisés.

  • GTM

    If I were a Springer-Verlag Graduate Text in Mathematics, I would be Joe Harris's Algebraic Geometry: A First Course.

    I am intended to introduce students to algebraic geometry; to give them a sense of the basic objects considered, the questions asked about them, and the sort of answers one can expect to obtain. I thus emphasize the classical roots of the subject. For readers interested in simply seeing what the subject is about, I avoid the more technical details better treated with the most recent methods. For readers interested in pursuing the subject further, I will provide a basis for understanding the developments of the last half century, which have put the subject on a radically new footing. Based on lectures given at Brown and Harvard Universities, I retain the informal style of the lectures and stresses examples throughout; the theory is developed as needed. My first part is concerned with introducing basic varieties and constructions; I describe, for example, affine and projective varieties, regular and rational maps, and particular classes of varieties such as determinantal varieties and algebraic groups. My second part discusses attributes of varieties, including dimension, smoothness, tangent spaces and cones, degree, and parameter and moduli spaces.

    Which Springer GTM would you be? The Springer GTM Test


  • sup saves my life.

  • Last modified: Fri Mar 13 17:34:19 CET 2015