Survols

Les textes ci-dessous sont essentiellement des survols. Plusieurs d'entre eux, néanmoins, contiennent des résultats originiaux.


Around the Littlewood conjecture in Diophantine approximation.
Publ. Math. Besançon. To appear.


Expansions of algebraic numbers.
"Four Faces of Number Theory", EMS Series of Lectures in Mathematics. To appear.


Transcendence of Stammering Continued Fractions.
"Number Theory and Related Fields", J. M. Borwein, I. Shparlinski and W. Zudilin (Eds), Springer Proceedings in Mathematics and Statistics 43, 2013, pp 129-141.


Hausdorff dimension and Diophantine approximation.
"Further Developments in Fractals and Related Fields", J. Barral, S. Seuret (Eds), Birkäuser, 2013, pp. 35-45.


Quantitative versions of the Subspace Theorem and applications.
J. Théorie Nombres Bordeaux 23 (2011), 35-57.


(avec B. Adamczewski) Transcendence and Diophantine approximation.
"Combinatorics, Automata and Number Theory", V. Berthé, M. Rigo (Eds), Encyclopedia of Mathematics and its Applications 135, Cambridge University Press (2010), 410-451. ( .pdf )


Multiplicative Diophantine approximation.
"Dynamical systems and Diophantine Approximation", Yann Bugeaud, Françoise Dal'Bo, Cornelia Drutu, eds. Société mathématique de France, Séminaires et Congrès 20 (2009), 107-127.


Linear forms in the logarithms of algebraic numbers close to 1 and applications to Diophantine equations.
Diophantine equations, 59--76, Tata Inst. Fund. Res. Stud. Math., 20, Tata Inst. Fund. Res., Mumbai, 2008.


(avec B. Adamczewski) A short proof of the transcendence of the Thue-Morse continued fractions.
Amer. Math. Monthly 114 (2007), 536-540.


(avec M. Laurent) Exponents of Diophantine approximation.
Proceedings of the trimester on Diophantine geometry, Pisa, pp. 101-121, CRM Series 4, Ed. Normale, Pisa, 2007. ( .pdf )


(avec F. S. Abu Muriefah) The Diophantine equation x^2+c=y^n.
Rev. Colombiana Mat. 40 (2006), 31-37. ( .pdf )


(avec B. Adamczewski) On the decimal expansion of algebraic numbers.
Fiz. Mat. Fak. Moskl. Semin. Darb. 8 (2005), 5-13. ( .pdf )


(avec M. Mignotte) L'équation de Nagell-Ljunggren (x^n - 1)/(x - 1) = y^q.
Enseign. Math. 48 (2002), 147--168.


Approximation diophantienne effective,
Mémoire d'habilitation, Strasbourg, Publication de l'I.R.M.A., 2000.


Diophantine equations over the twentieth century: a (very) brief overview.
Proceedings of the Number Theory conference held in Kyoto (2000).


(avec J.-P. Conze) Dynamics of some contracting linear functions modulo 1,
in : Noise, Oscillators and Algebraic Randomness, Lectures at Chapelle des Bois (France), 1999, Ed. M. Planat, pp. 379--387. Lecture Notes in Physics 550, Springer (2000).


Fundamental systems of S-units with small height and their application to Diophantine equations,
Publi. Math. Debrecen 56 (2000), 279--292.


Lower bounds for the greatest prime factor of a x^m + b y^n,
Proceedings of the Number Theory conference held in Ostravice, Acta Math. Inform. Univ. Ostraviensis 6 (1998), 53-57.


Formes linéaires de logarithmes et applications,
Thèse de doctorat, Strasbourg, Publication de l'I.R.M.A., 1996.