Partenaires

Logo IRMA
Logo CNRS
Logo UDS


Rechercher

Sur ce site

 
 IRMA, UMR 7501
 7 rue René-Descartes
 67084 Strasbourg Cedex
 Tél. 33 (0)3 68 85 01 29
 Fax. 33 (0)3 68 85 03 28

Accueil > Agenda > Colloques et rencontres > Archives > Agenda 2008 > Recent Progress in Arithmetic D-modules theory

Recent Progress in Arithmetic D-modules theory

IRMA, Friday 3rd October 2008

Recent Progress in Arithmetic D-modules theory

on Friday 3rd October 2008,
at Institut de Recherche Mathematique Avancée, Strasbourg.

The aim of this conference is the exposition of recent progress
on arithmetic D-modules theory. We will focus in particular on
the work of Caro and Tsuzuki, which, combined with the semi-stable
theorem of Kedlaya, proves that the category of overholonomic arithmetic
D-modules with Frobenius, contructed by Caro, is stable by the 6 Grothendieck
cohomological operations.

Organizers : C.Noot-Huyghe and A.Marmora

PROGRAMME


3 octobre 2008

08h00

A confirmer

A confirmer

08h30

Pierre Berthelot - Univ Rennes 1

An introduction to finiteness conditions in arithmetic D-module theory

09h05

Kiran Kedlaya - MIT

Semistable reduction for overconvergent F-isocrystals

10h20

Nobuo Tsuzuki - Tohoku Univ.

On the overholonomicity of overconvergent F-isocrystals on smooth varieties I. Comparison between log-rigid and rigid cohomologies

11h20

11h45

Daniel Caro - Univ. Caen

On the overholonomicity of overconvergent F-isocrystals on smooth varieties II

12h45

14h30

Richard Crew - Florida Univ.

Rings of p-adic differential operators on tubes

15h45

Takeshi Tsuji - Tokyo Univ.

Nearby cycles and D-modules of log schemes in characteristic p>0

Dernière mise à jour le 5-08-2009