Logo UDS


Sur ce site

 IRMA, UMR 7501
 7 rue René-Descartes
 67084 Strasbourg Cedex
 Tél. 33 (0)3 68 85 01 29
 Fax. 33 (0)3 68 85 03 28

Accueil > Publications > Lectures in Mathematics & Theoretical Physics > Volume 01 : Deformation Quantization

Volume 01 : Deformation Quantization

Editeur : Gilles Halbout
Edition : 2002. 17 x 24 cm. VIII, 236 pages. Paperback
Cloth € 34,95 [D] / sFr 56,- USA, Canada, Mexico : Cloth US$ 34.95 .- ISBN 3-11-017247-X

Contains eleven refereed research papers on deformation quantization by leading experts in
the respective fields. Topics covered are : star-products over Poisson manifolds, quantization
of Hopf algebras, index theorems, globalization and cohomological problems. Both the
mathematical and the physical approach ranging from asymptotic quantum electrodynamics
to operads and prop theory will be presented. Historical remarks and surveys set the results
presented in perspective.
Directed at research mathematicians and theoretical physicists as well as graduate students,
the volume will give an overview of a field of research that has seen enormous activity in the
last years, with new ties to many other areas of mathematics and physics.

Contents :

- Gilles Halbout : Deformation quantization, methods and applications
- Giuseppe Dito, Daniel Sternheimer : Deformation quantization : genesis and metamorphoses
- Giuseppe Dito : Deformation quantization of covariant fields
- Boris Fedosov : On the trace density in deformation
- Daniel Arnaudon, Jean Avan, Luc Frappat, Eric Ragoucy : Deformed double
Yangians and quasi-Hopf algebras
- Stefan Waldmann : On the representation theory of deformation
- Claude Roger : Unimodular vector fields and deformation quantization
- Christian Frønsdal : Harrison cohomology and abelian deformation quantization on algebraic varieties
- Louis Boutet de Monvel : Related semi-classical and Toeplitz algebras
- Alberto S. Cattaneo, Giovanni Felder, Lorenzo Tomassini : Fedosov connections on jet bundles and deformation
- Dimitri Tamarkin : Quantization of Lie bialgebras via the formality of
the operad of little disks

Distributor : de Gruyter.

Access to detailed information and order form on de Gruyter website

Dernière mise à jour le 15-12-2014

Dans la même rubrique :